a2 United States Patent

Gupta et al.

US009239743B2

US 9,239,743 B2
Jan. 19, 2016

(10) Patent No.:
(45) Date of Patent:

(54) METHOD AND ARCHITECTURE FOR

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

EXCEPTION AND EVENT MANAGEMENT IN
AN EMBEDDED SOFTWARE SYSTEM

Applicant: ITTIAM SYSTEMS (P) LTD,
Bangalore (IN)

Inventors: Puneet Gupta, Bangalore (IN); Sagar
Gaonkar, Bangalore (IN); Sreekanth
Majji, Visakhapatnam (IN); Sneha
Vaidyanathan, Bangalore (IN)

Assignee: ITTIAM SYSTEMS (P) LTD.,
Bangalore, Karnataka (IN)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 71 days.

Appl. No.: 13/649,136

Filed: Oct. 11, 2012

Prior Publication Data

Apr. 17, 2014

US 2014/0109111 A1
Int. Cl.

GO6F 3/00 (2006.01)
GO6F 9/44 (2006.01)
GO6F 9/46 (2006.01)
GO6F 13/00 (2006.01)
GO6F 9/54 (2006.01)
GO6F 11/07 (2006.01)
GO6F 11/30 (2006.01)
U.S. CL

CPC oo,

GO6F 9/542 (2013.01); GOGF 11/0736

(2013.01); GO6F 11/0766 (2013.01); GO6F
1173065 (2013.01); GO6F 2201/86 (2013.01);
GO6F 2201/865 (2013.01)

SLn INVOKES EEM TO OBTAIN
EXCEPTION ! EVENT RECORD.

ITEVENT/ OR

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,918,053 B1* 7/2005 Thatteetal. 714/16
7,640,458 B2* 12/2009 Raoetal. ... 714/38.14

2005/0015579 Al* 1/2005 Groveretal. 712/244
2007/0083792 Al* 42007 McDermottetal. 714/20
2009/0187750 Al* 7/2009 Bugnion 712/244
2009/0288101 Al* 11/2009 Gandinetal. ... 719/314
2010/0306043 Al* 12/2010 Lindsay etal. . 705/14.41
2011/0055640 Al1* 3/2011 Huangetal. 714/49
2012/0089859 Al* 42012 Wangetal. ... 714/1

* cited by examiner

Primary Examiner — H S Sough

Assistant Examiner — William C Wood

(74) Attorney, Agent, or Firm — Prakash Nama; Global IP
Services, PLLC

(57) ABSTRACT

A method for providing a dedicated software framework for
exception and event management in an embedded software
system is disclosed. In one embodiment, each of exceptions/
events originated from users are uniquely identified and
severity of the exceptions/events is categorized. The users are
software subsystems, software layers and software modules
in the embedded software system. Further, information
regarding the exceptions/events is reported through various
layers, subsystems and modules for use by an application.
Furthermore, information associated with one or more of the
reported exceptions/events is logged using a logging frame-
work. In addition, the exceptions/events are handled to keep
applications running without causing an unexpected behavior
in the embedded software system.

32 Claims, 17 Drawing Sheets

400

EXGEPTION?,

PASS THE
EVENTTO

NEXT
OVERLYING
R\ 414

SL 1 INVOKES EEM 10
‘OBTAIN EXCEPTION
RECORD

US 9,239,743 B2

Sheet 1 of 17

Jan. 19, 2016

U.S. Patent

~

([0)3

o_‘_‘.J

801 J

[‘DId

90l ./

¥ol ./

NOILd3OX3 ANV LN3IAS

(H33) ONITANVH (733) ONIDDOT (433) ONILHOd3Y 133)
NOILVYDI4ILN3QI
NOI1ld33Xx3 NOILdIOX3 NOI1ld3d0X4 NOILdIDXT
ANV LN3dAF ANV LN3AZ ANV LN3aN3d ANy LN3IAT
¢0l ./
(W33) LNFWIDOVYNVIN

U.S. Patent Jan. 19, 2016 Sheet 2 of 17 US 9,239,743 B2

UNIQUELY IDENTIFY EVENTS/EXCEPTIONS ORIGINATED FROM USERS . 202
REPORT INFORMAITON REGARDING THE EXCEPTIONS/EVENTS |~ 204
LOG INFORMATION ASSOCIATED WITH ONE OR MORE OF THE REPORTED 204

EXCEPTIONS/EVENTS

HANDLE THE REPORTED EXCEPTIONS/EVENTS TO KEEP APPLICATIONS RUNNING| 208
WITHOUT CAUSING AN UNEXPECTED BEHAVIOR

PERFORM ROOT CAUSE ANALYSIS FOR DETERMINING A SOURCE OF THE EVENT/| 210
EXCEPTION -

200

v/

FIG. 2

U.S. Patent Jan. 19, 2016 Sheet 3 of 17 US 9,239,743 B2

AN EEM API IS INVOKED BY SL n TO OBTAIN AN EXCEPTION | 302

RECORD
THE EXCEPTION RECORD IS POPULATED BY SLn ——"304
— SLn PASSES THE EXCEPTION RECORD TO SLn-1 —. .- 306
EEM API IS INVOKED BY THE SLn-1 TO OBTAIN AN _.__.-308

EXCEPTION RECORD
THE EXCEPTION RECORD IS POPULATED BY SLn-1 .- 310
DECREMENT [...
nBY 1
SLn-1 INVOKES EEM API TO LINK THE EXCEPTION RECORD |~ .312
OF SLn WITH THE EXCEPTION RECORD OF SLn-1
IS TOPMOST LAYER — 314

REACHED?

THE EXCEPTION RECORD IS PARSED BY TOPMOST LAYER |—--~318

IS APl CALL
SUCCESSFUL?

379 TAKE APPROPRIATE ACTION/ LOG THE
PROCEED WITH NEXT OPERATION |~ ERROR
TOP MOST LAYER INVOKES AN EEM API TO FREE THE 306

300

EXCEPTION RECORD

FI1G. 3

. 324

U.S. Patent Jan. 19, 2016 Sheet 4 of 17 US 9,239,743 B2
SLn INVOKES EEM TO OBTAIN 402
EXCEPTION / EVENT RECORD. =
SLn POPUEL\,/AI;I"\IIEE ';I'I;(I:EOEF:([(;EPTION/ . 404
SLn INVOKES REGISTERED CALL 406
BACK TO SLn-1 -
408
EVENT EXCEPTION
S ITEVENT/ O
EXCEPTION?
SLn-1 INVOKES EEM TO
OBTAIN EXCEPTION [~~~ 418
RECORD
HANDLE THE
EVENT?
SLn-1 FILLS THE 420
EXCEPTION RECORD. =
PASS THE
412y YES EVENT TO
NEXT
OVERLYING
TAKE ACTION LAYER SLn-1 INVOKES
N\ 414 REGISTERED CALLBACK TO p—~—~ 422
SLn-2
FREETHE |~ 416
RECORD DECREMENT

400

424

n
N~ 126

PARSE THE RECORD/ TAKE ACTION p~r428

FREE THE RECORD

| 430

FIG. 4

US 9,239,743 B2

Sheet 5 0f 17

Jan. 19, 2016

U.S. Patent

¢ DId

9T% (STVHIHIYAd ANV SHOSSIO0Hd) WILSAS IHVYMAHVH

H

H

ﬁ FIG (dS9) 39¥YMIVd LHOddNS ayvod

u ﬁ 215 (SO) WALSAS ONILVYIJO u

5SS O-2W-¢S
3TNAON-9NS

256 g-2nN2s

855
SNOILINI43d
ar31NAaocw
-9NS ® I1NACW

09%
755 Idv
MYHOMIAWYHS | W33
wa3

ors

015
3INAON (W33)
LINIFWIDYNYIN

LIN3AT =

31NAoOnW-ans ya
0SS v-ZN-ZS 8BS v-LIN-ZS 988
31NAON-8NS JINACK-ENS, SNOILINId3a 9¢C g-LIN-1LS
— alr 37Ndon J1Ngon-ans
\._.Hmm_._oz<_._ 33 31NAoW) crs LN -ans ® 3ITINAOW
7] =% 7. -ZS 3INAon e LN
\ 775 2W-2S 3INAOW / ¥ES V-LN-LS
H J1Naon-gns
OFS ¥3T1aONVH | [8ES IdV WILSASENS =7 E oA 0¢5 —
33 N3LSASENS A Nm_m._m:mﬁ“,_ow,_m ZN-LS -P%M_Nm_mm,_o_\,_
—_ 3INAOW
805 (2s) W3LsSAsANS —
X 9¢S ¥31ANVH | (3775 1dv W3 1sAsENs)

33 W3LSASENS 7 Y

N

905 (LS) WALSASENS \

¢S ¢N-SOV 31NAON

0¢5 LIW-SOV ATNJON

8 NOILd3OX3

\-

N/

005

v

v

BTG ¥ITANVH 33 ¥3LSVYIN

P0G (SOV) IUYMLI0S T0ULNCD NOILYDITddY

’

205 (INA) JOYAUTLINI ANIHOVIN-NYI

US 9,239,743 B2

Sheet 6 of 17

Jan. 19, 2016

U.S. Patent

009

9 D4

0TS 31NA0OW (W33) LNIWIOVYNYIN LNIAT 8 NOILAFOX3

_)
r 9%
— HHOMINY
h €9 ¥39901 u 979 31NAON W33
3 NOILVINIWTTAWI LSIT AIHNIT
3\ [) *
229 300N HOLvd e _ ~\
Y04 AHOWIW ONIDOOT - -
s 3INAOW LNOW A oI5
X ONIYNIT 3 HOW3IW FINAOW
) dNLONYLS Q¥003Y SNOILINIAAd
] Qyo03Y W33
028 3TINAOW 375 L1 a1 3sve 33
SOILSILYLS NS9O 2
ONIOOOT ﬁ 209
EE!
J —
909 .
w53 R sz
\ ﬁ ﬁ . J
J

95 1dV J0 FOVAHILNI ITNAOKW W33

H

U.S. Patent Jan. 19, 2016 Sheet 7 of 17 US 9,239,743 B2

EEM MODULE 510

REGISTER™ ACS
ACS504 |- —-——-——-——-——-——-—= »

BASE ID FOR ACS = 0XA000

ACS-M1 ID: 0XA100
ACS-M2 |D: 0XA200 [

REGISTER™ $1
—_—_——— e — — — E&E BASE ID
S1 506

22 M= — = = — = — — = DEFINITIONS
BASE ID FOR S1 = 0XB00O MODULE* 610

S$1-M1 I1D: 0XB100
S1-M1-A ID: 0XB101
S$1-M1-B ID: 0XB102

S$1-M2 ID: 0XB200

S$1-M3 ID: 0XB300

* MAP OF BASE IDS
REGISTER™ S2

2508 @[S -----o—=— >

“BASE ID FOR S2 = 0XC000 | ** PUBLISH EXCEPTION &
S2-M1 ID: 0XC100 EVENT IDS

S§2-M1-A ID: 0XC101
S$2-M2 1D: 0XC200

§2-M1-A ID: 0XC201

S2-M1-A ID: 0XC202

S2-M1-A ID: 0XC203

FIG. 7

US 9,239,743 B2

Sheet 8 of 17

Jan. 19, 2016

U.S. Patent

8 DId

08 d4003d

V-LN-¢S

8%S V-LIN-Z¢S

208 qd003Y |«

V-LN-CS

708 44003y

LN-CS

Z¥S LIN-ZS

08 Q4003Y |«

LN-CS

-
< —
08 Q4003 |«
v-LN-ZS
208 a¥003Y —
08 Q4003 |«
v-LN-ZS
LIN-ZS
008

08 4003

es

e/
[
0|
AN
w

08 YO0y |«

es

08 d4003d

SOV

705 SOV

(NMOQ
dol)
STIVO IdV
NILSAS
a3aaq3agna
40 MO14

U.S. Patent

Jan. 19, 2016

Sheet 9 of 17

/ 900A

RESCLUTION 802

ELEMENT NAME 204

ELEMENT DESCRIPTION 20

32-BiT UNSIGNED

SOURCE_ID

MODULE/SUB-MODULE FROM WHICH THE EXCEPTION
ORIGINATED.

32-BIT UNSIGNED

EXCEPTION_CODE

IDENTIFICATION OF THE NATURE AND CAUSE OF THE
EXCEPTION. SEE DESCRIPTION BELOW FOR THE
SYNTAX.

32-BIT UNSIGNED

TIMESTAMP

TIME AT WHICH THE EXCEPTION WAS FIRST
OBSERVED AT THE SOURCE (SOURCE_ID)
MEASURED IN MILLISECONDS FROM A PRE-
DEFINEDSTARTING PCINT.

POINTER

EXCEPTION_STRING

STRING WITH THE DESCRIPTION OF THE EXCEPTION.
EEM INTERNALLY SHALL RESTRICT ITS LENGTH TG
Kt BYTES.

LINE NUMBER OF SOURCE FILE WHERE THE

32-BIT UNSIGNED | LINE_NUM EXCEPTION WAS SEEN IN THE SOURCE
CODE(SOURCE_ID)
FILE NAME OF SOURCE FILE WHERE THE EXCEPTION
i - |y
SOINTER FILE. NAME WAS SEEN IN THE SQURGE (SOURCE_ID). EEM

INTERNALLY SHALL RESTRICTITS LENGTH TO K2
BYTES.

32-BIT UNSIGNED

LOGGING_TYPE

EXCEPTION LOGGING TYPE FOR THIS EXCEPTION
REPORT. THIS COULD BE 3ET TG

1. NONE {(DISABLES LOGGING)
2. ERROR

3. WARNING

POINTER

NEXT

LINK TO THE NEXT ASSOCIATED EXCEPTION
DESCRIPTCR IN THE CALL FLOW

FIG. 9A

US 9,239,743 B2

U.S. Patent Jan. 19, 2016 Sheet 10 of 17 US 9,239,743 B2

/ 900B

RESERVED EXCERTION TYPE EXCEPTION VALUE (20 BITS) 912
(8 BITS) 808 (4 BITS) 810

i:___'_'f_’f’]_gfz\’v’ws 23-20 19 - 0 (DEFINED RY THE MODULES / SUB-MODULES)
RESERVED

FOR DEBUG) EACH 20-BIT VALUE REPRESENTS A SPECIFIC REASON BEHIND

THE EXCEPTION

FIG. 9B

/gooo

EXCEPTICNTYPE] 4 BIT VALUE

NESCRIET a1
914 916 DESCRIPTION 818

A CRASH, HANG OR CATASTROPHIC CONDITION THAT LEADS
FATAL ERROR G001 TC UNACCEPTABLE BEHAVIOR AND LENDS THE SYSTEM
UNUSABLE (UNTIL SOME CORRECTIVE ACTION 18 TAKEN)

A CONDITION IN WHICH A CONFIGURATION OR EXECUTION
G310 ERROR HAS OCCURRED. WHICH DOES NCT LEND THE
SYSTEM UNUSABLE

A CONDITION WHICH MAY LEAD TO AN ERROR IN THE
WARNING 6011 PERFORMANCE OF THE SYSTEM BUT IS NOT AN IMMEDIATE

MR
CONCERN

NON FATAL
ERROR

0100, 0101,
UNUSED 0410, 0111 ANDE CAN BE USED INTERNAL DEBUG PURPCSES
1000

FI1G. 9C

U.S. Patent Jan. 19, 2016 Sheet 11 of 17 US 9,239,743 B2

/ 900D

RESOLUTION 220 § ELEMENT NAME 922 ELEMENT DESCRIPTION 924

MODULE/SUB-MCDULE FROM WHICH THE EVENT

ORIGINATED.

IDENTIFICATION CF THE NATURE AND CAUSE OF

32-BIT UNSIGNED § EVENT_CODE THE EVENT. SEE DESCRIPTION BELOW FOR THE

SYNTAX,

TIME AT WHICH THE EVENT WAS FIRST OBSERVED

AT THE SOURCE (SCURCE_ID) MEASURED IN

MILLISECONDS FROM A PRE-DEFINED STARTING

POINT.

STRING WITH THE DESCRIPTION OF THE EVENT.

POINTER EVENT_STRING EEM INTERNALLY SHALL RESTRICT ITS LENGTHTO
K1 BYTES.

32-BIT UNSIGNED § SCURCE_ID

32-BIT UNSIGNED § TIMESTAMP

LINE NUMBER OF SOURCE FILE WHERE THE EVENT

- D E NUA
S2-BIT UNSIGNED § LINE_NUM WAS SEEN IN THE SOURCE CODE (SOURCE._1D)

FILE NAME OF SOURCE FILE WHERE THE EVENT
WAS SEEN IN THE SOURCE (SOURCE D). EEM
INTERNALLY SHALL RESTRICT TS LENGTH TO K2
BYTES.

EVENT LOGGING TYPE FOR THIS EXCEPTION
REPORT. THIS COULD BE SET TO:

POINTER FILE_NAME

32-BiT UNSIGNED § LOGGING_TYPE
1. NONE {DISABLES LOGGING)

2. EVENT

FIG. 9D

U.S. Patent Jan. 19, 2016 Sheet 12 of 17 US 9,239,743 B2

'/900E

RESERVED (3 VENT TYPE {4 VENT VALUE (20 BITS) 830

BiTS) 926 BITS) 925

31-24 (ALWAYS | 23-20 19-0 (DEFINED BY THE MODULES / SUB-MODULES)
SETTOOQ,

RESERVED

FOR DEBUG)
EACH 20-BiT VALUE REPRESENTS A SPECIFIC EVENT

FIG. 9E

'/900F

EVENT TYPE 832 ; BiTg\é’i‘LUE DESCRIPTION 938

AN EVENT THAT LETS THE OVERLYING SOFTWARE ENTITIES
KNOW THAT SOME PARTICULAR PRE-DEFINED CONDITION
HAS OCCURRED, USUALLY CONFIGURED BY THE OVERLYING
SOFTWARE ENTITIES WITH S3CME PARAMETERS.

NOTIFICATION G001

AN EVENT THAT LETS THE OVERLYING SOFTWARE ENTITIES

ACKNOVLEDSENE 5010 KNOW THAT SOME PREVIOUS COMMAND FROM THEM TO
: THIS SOFTWARE MODULE HAS BEEN SERVICED
AN EVENT THAT LETS THE OVERLYING SOFTWARE ENTITIES
KNOW THAT A PARTICULAR SITUATION HAS OCCURRED THAT
MAY NEED ITS ATTENTION.
ALERT 0011 UNLIKE THE NOTIFICATIONS, THESE SITUATIONS ARE NOT

USER CONFIGURED AND THE MODULE/SUBSYSTEM HAS IN-
BUILT INTELLIGENCE TO DETECT THESE. THESE WOULD
TYPICALLY BE RELATED TO RESOURCE USAGE MONITORING
LIKE STACK CORRUPTION / BUFFER OVERFLOW / ETC.

0100, 0101,

UNUSED 0110, 0111 AND] CAN BE USED INTERNAL DEBUG PURPOSES
1000

FIG. 9F

US 9,239,743 B2

Sheet 13 0of 17

Jan. 19, 2016

U.S. Patent

809 3TNAOCW ONIDOO

909
JITNAOW ONISHVd 33

01 "DIA

< —

4003d W33 3SHvYd

9€G —

<

SNOILYNILSIA OL <&
«

ooovl\\

29 439901

1¢ 3TNACN W33

JOVHL MAN V OO0

e zss 055

(([/

O-¢N-<¢S _— g9-¢N-¢S — V-CN-¢S

7¥s Cn-2s

V-LN-¢S _

CFe LIN-ZS

— B0S ¢S

g-LN-LS H Y-LN-LS

D

0€S ¢N-LS

H 025 LIN-SOV

_

P0S SOV

371NAOAN W33 40 Sd3sn

PeS

U.S. Patent Jan. 19, 2016 Sheet 14 of 17 US 9,239,743 B2

MASTER EE
HANDLER 518

SUBSYSTEM EE
HANDLER 540

MODULE EE
HANDLER 546

A

SUB-MODULE SUB-MODULE SUB-MODULE
S2-M2-A 550 S2-M2-B 552 S2-M2-C 554

L— 1100

FIG. 11

US 9,239,743 B2

Sheet 15 0of 17

Jan. 19, 2016

U.S. Patent

¢l DI

GG 2GS 06s

~ !

DTN-ZS __ g-ZN-ZS __ V-ZN-ZS
\ / 7S TN-CS
V-LN-ZS _
4 —
8¥s 275 LIN-ZS H
< (05 25]
Q40239 W33 3344
g
a¥OD3d WIT NI
OIS 31NQOW W33 — ZES SW-LS _
= —
a4053d W33 3SUvd ﬁ 555 Z-LS H
o g-LN-LS H H Y-LA-LS ves
a¥4o53d W33 1114 —
occ — 75 LW-LS
< H 905 LS _
a4023d W3 3LYI0TY
H 0ES ZN-LS _
(25 LA-SOV |

705 SOV

-
oozl I\ ITNAONW W33 40 sH3SN

e

U.S. Patent Jan. 19, 2016 Sheet 16 of 17 US 9,239,743 B2

/ 1300

r) - “
ALLOCATE EEM RECORD
SOURCE OF EXCEPTION >
OR EVENT 1302 FILL EEM RECORD >
\ y,
s ALLOCATE EEM RECORD
RECIPIENT OF
EXCEPTION OR EVENT FILL EEM RECORD > EEM MODULE 510
1304
LINK EEM RECORD
§ J
s N PARSE EEM RECORD >
HANDLER OF EXCEPTION
OR EVENT 1306 FREE EEM RECORD >
- y _ J

FIG. 13

US 9,239,743 B2

Sheet 17 of 17

Jan. 19, 2016

U.S. Patent

1 DId
010) 4" I/

(74"
JOVHOLS FT9YAONTH-NON
817l 3OVHOLS FT9VAONIY 91l OVAHILINI ¥HOMLIN
Yi¥l snd

¢l S30IA3A LNdJLNO

LG ITNAOW W33

CLyL NVHO0dd 431NdNOD
Y0¥l 40SS300dd

Ol¥L AHJOW3W TTILVYIOA-NON

8071 AJOW3N JTILVYIOA

9071 AHOWN3N

0¥l WALSAS FHVYML40S d3Ad3Idng

\

O¢rl SNOILOANNGD
NOILVOINNWINGD

Zort
SI0IAIA LNdNI ¥3ASN

US 9,239,743 B2

1
METHOD AND ARCHITECTURE FOR
EXCEPTION AND EVENT MANAGEMENT IN
AN EMBEDDED SOFTWARE SYSTEM

TECHNICAL FIELD

Embodiments of the present subject matter relate to an
embedded software system. More particularly, embodiments
of the present subject matter relate to a method and architec-
ture for exception and event management in the embedded
software system.

BACKGROUND

Typically, for an embedded software system, reliability of
operation is critical, especially in the field usage. Any failures
or aberrations from the expected behavior (exceptions) need
to be reported and handled. This is also relevant in the devel-
opment and testing phases of systems so that their behavior
can be closely monitored, and any improvements made to
improve the system reliability are ensured when deployed.
Additionally, when special events happen, for example, bat-
tery level goes low, in a mobile device, while in use, they need
to be reported to the user. In embedded systems, number of
such events happening could be more than a few, and they
generally require careful management. Further, during devel-
opment and debugging phases of the products, exception
records can provide valuable information regarding the
sources of these exceptions, which can facilitate in reducing
the time needed for debugging.

Currently, there are no standardized guidelines for how
various parts of the software system should generate and
report such exceptions and events in embedded software sys-
tems. Given that such systems typically comprise of a multi-
tude of layers and components, they pose a considerable
challenge to maintain consistency in how these exceptions
and events are identified, reported, logged and handled
throughout the multitude of layers of software stack. This
becomes even more of a concern as the multitude of layers
and components may be developed by different teams or
developers. In the absence of a unified way to manage these
exceptions and events, the reliability of the embedded soft-
ware systems usually gets limited to the integrator’s expertise
and attention. Also, in the absence of a pre-defined way to
manage these exceptions or events, it is more likely that some
of these go unhandled, thus resulting in compromising the
reliability of the embedded software system.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments are described herein with reference
to the drawings, wherein:

FIG. 1 illustrates a flowchart of a high-level approach to
exception and event management in an embedded software
system, according to one embodiment;

FIG. 2 illustrates a flowchart of a method for providing a
dedicated software framework for exception and event man-
agement in the embedded software system, according to one
embodiment;

FIG. 3 illustrates a flowchart of a method for reporting
synchronous exceptions by an exception and event manage-
ment (EEM) module, according to one embodiment;

FIG. 4 illustrates a flowchart of a method for reporting
asynchronous events and exceptions by the EEM module,
according to one embodiment;

FIG. 5 illustrates a block diagram of an architecture includ-
ing several types of users including subsystems, modules and

10

20

25

30

35

40

45

50

55

60

65

2

software layers for the exception and event management in
the embedded software system, according to one embodi-
ment;

FIG. 6 illustrates a block diagram of the EEM module, such
as shown in FIG. 5, including major components and external
and internal interfaces, according to one embodiment;

FIG. 7 illustrates a block diagram of registration of users
with the EEM module and exception/event identification,
according to one embodiment;

FIG. 8 illustrates a block diagram of generating and report-
ing exceptions/events across various users in the embedded
software system, according to one embodiment;

FIGS. 9A-F illustrate tables including specific details of
exception reporting data structures, according to one embodi-
ment;

FIG. 10 illustrates a block diagram of exception and event
logging and parsing, according to one embodiment;

FIG. 11 illustrates a block diagram of a hierarchical
approach in handling the events/exceptions, according to one
embodiment;

FIG. 12 illustrates a block diagram of standard EEM appli-
cation programming interfaces (APIs) provided to all the
users registered with the EEM module for exception/event
reporting, handling and parsing, according to one embodi-
ment;

FIG. 13 illustrates a block diagram of how different types
of users within the embedded software system use the avail-
able EEM APIs to invoke different EEM interfaces, according
to one embodiment; and

FIG. 14 illustrates a block diagram of the embedded soft-
ware system having the EEM module for identifying, linking
and handling exception/event generated in the embedded
software system, according to one embodiment.

The systems and methods disclosed herein may be imple-
mented in any means for achieving various aspects. Other
features will be apparent from the accompanying drawings
and from the detailed description that follow.

DETAILED DESCRIPTION

A method and architecture for exception and event man-
agement in an embedded software system are disclosed. In
the following detailed description of the embodiments of the
present subject matter, references are made to the accompa-
nying drawings that form a part hereof, and in which are
shown by way of illustration specific embodiments in which
the present subject matter may be practiced. These embodi-
ments are described in sufficient detail to enable those skilled
in the art to practice the present subject matter, and it is to be
understood that other embodiments may be utilized and that
changes may be made without departing from the scope ofthe
present subject matter. The following detailed description is,
therefore, not to be taken in a limiting sense, and the scope of
the present subject matter is defined by the appended claims.

The term “software sub-module” refers to a functional unit
of code, for example, sub-module includes a single function
or set of functions and associated code that performs a spe-
cific task on the given inputs to yield an output. Further, the
term “software module” refers to a group of sub-modules and
associated functions that together provide a defined & inde-
pendent functionality. Furthermore, the term “subsystem”
refers to a group of modules and associated functions to
support a set of logically related functionality. There may be
one or more subsystems within the subsystem. Every sub-
system has a well-defined set of APIs that enable the integra-
tion of the subsystem into the higher layers and to interact
with other subsystems. Additionally, the term “Application

US 9,239,743 B2

3

Control Software (ACS)” refers to a centralized intelligence
and control logic to manage subsystems, modules and sub-
modules, and provide a unified man-machine-interface
(MMI). Further, the term “exception” refers to an abnormal
occurrence during flow of software execution that may affect
the functionality, stability or performance”. Further, the term
“synchronous exception” refers to an exception that occurs in
the context of a system API invoked by a user and is to be
reported to the user when that API call returns. Furthermore,
the term “asynchronous exception” refers to an exception that
occurs outside the context of a system API, i.e., the exception
occurs during the course of steady state operation of the
system. In addition, the term “event” refers to a software
indication that some special asynchronous occurrence has
happened during steady state operation (though it is not an
abnormal behavior) and may be of interest to the user to know
about.

The terms “exception/event” and “event/exception” are
used interchangeably throughout the document. Further, the
terms “record” and “event/exception record” are used inter-
changeably throughout the document.

FIG. 1 illustrates a flowchart 100 of a high-level approach
to exception and event management in an embedded software
system, according to one embodiment. At block 102, excep-
tion and event management is performed in an embedded
software system as follows. At step 104, each of exceptions/
events originated from one or more users are uniquely iden-
tified and severity of the exceptions/events is categorized. The
users include, for example, a software sub system, software
layer, software module and software sub-module associated
with the embedded software system. At step 106, information
regarding the exceptions/events is reported through various
users in the embedded software system. At step 108, infor-
mation associated with one or more of the reported excep-
tions/events is logged. At step 110, the reported exceptions/
events are handled to keep applications running without
causing an unexpected behavior in the embedded software
system. The steps 102-110 can be executed in any order. An
exemplary order of execution of the functions of the event and
exception management such as, identification, reporting, log-
ging and handling is shown in FIG. 2.

Referring now to FIG. 2, which is a flowchart 200 illustrat-
ing a method for providing a dedicated software framework
for exception and event management in the embedded soft-
ware system, according to one embodiment. At step 202, each
of exceptions/events originated from the users is uniquely
identified in terms of its source and severity of the exceptions/
events is categorized. In one exemplary implementation, the
users in the embedded software system are registered using a
unique base identity (ID) during initialization of the users. In
one embodiment, the unique base ID is an exception and
event based 16-bit base ID. For example, the top four bits of
the 16-bit base ID are used to identify up to 16 users, keeping
the lower 12-bits to zero. Further, the unique base IDs of the
users are used to uniquely identify the exceptions/events gen-
erated by the users. Furthermore, each user is provided the
ability to extend its unique base ID for its internal modules
and sub-modules to further assist in identification of an exact
source of exception/event occurrence. In one exemplary
embodiment, each user extends the registered 16-bit base ID
to its internal modules and sub-modules by updating the 12
lower bits, allowing each user to uniquely identify (2'%-1)
modules and sub-modules within the user. In another exem-
plary embodiment, the unique base ID may be extended to 24,
32, 64 or another number of bits while applying the same
concept. Further, module and sub-module base IDs may be
extended to be more than 12 bits out of the total available in

25

40

45

4

the unique base ID. Depending on the unique base ID of the
user, it is possible to unambiguously trace the source of any
exception/event to a corresponding user and determine a rea-
son behind its occurrence. The process of registration and the
format of unique base ID are explained in more detail later in
conjunction with FIG. 7.

At step 204, the information regarding the exceptions/
events is reported through various layers, subsystems and
modules for use by an application. In one embodiment, a
record is allocated to a user to fill exception/event information
for the purpose of exception/event reporting. For example, the
exception/event record includes the associated unique base
IDs as well as module or sub-module base IDs where the
exception/event is encountered and details, such as a line of
code generating the event/exception, a name of a function
generating the event/exception, string description of the
exception/event in words, exception/event codes, severity of
the event/exception, any debug parameters or information
associated with the event/exception and the like. The record is
aregion of memory allocated for reporting exceptions/events.
Within the record, each exception/event is identified using the
unique base IDs associated with the user from which the
exception/event originated. In one exemplary embodiment,
the exception/event records are reported using one or more
data structures. Further, the same data structures are used by
all the users to maintain consistency of reporting, manage-
ment of the memory for these exception/event records in the
embedded software system and deterministic parsing of the
exception/event information reported.

In these embodiments, exception/event records created by
the users are linked as they propagate across the users of the
embedded software system to generate a trace of the flow of
exception/event being reported as it traverses through the
various users. In linking the exception/event records, an
exception/event record created by a user associated with the
exception/event origination is returned to a subsequent over-
lying layer for concatenating its own exception/event record
to supplement the information populated in the exception/
event record. The above step is repeated at each subsequent
overlying layer until linking of the exception/event records of
all the subsequent overlying layers is completed. Therefore,
when the exception/event record reaches the final layer of the
embedded software system, all the exception/event records of
the underlying layers are linked. In these embodiments, the
exceptions are either synchronous or asynchronous, while the
events are asynchronous. The process flow of the synchro-
nous exception is explained in detail with reference to FIG. 3.
Further, the process flow of the asynchronous event or an
exception is explained in detail with reference to FIG. 4.

At step 206, information associated with one or more of the
reported exceptions/events are logged using a logging frame-
work. In one embodiment, the one or more of the reported
events/exceptions to be logged are determined. Further, the
logged exceptions/events are filtered based on logging crite-
ria. Furthermore, the information associated with the filtered
exceptions/events is logged at one or more destinations using
the logging framework. The logging framework is explained
in detail in conjunction with FIG. 10. In one exemplary
embodiment, the information associated with the one or more
of the reported exception/events is logged in a batch mode.
For example, the exception/event logs are temporarily stored
in memory and periodically routed to one or more destina-
tions. Further, the batch mode traces are logged to the one or
more destinations in a low priority or background mode to
minimize impact on the core processing load of the embedded

US 9,239,743 B2

5

software system and to ensure that the primary functionality
of'the embedded software system does not get atfected by the
logging process.

At step 208, the reported exceptions/events are handled to
keep applications running without causing an unexpected
behavior in the embedded software system by taking neces-
sary actions. In one embodiment, a hierarchical framework is
defined for handling the reported exception/event originating
from each of the users based on an invoked user functionality.
Further, each of the linked exception/event records is parsed
by the overlying user. For example, the event/exception data
reported by a user in its record is parsed by the overlying user.
Furthermore, appropriate action is taken based on the out-
come of the parsing to keep the applications running without
causing unexpected behavior. The action to be taken is
decided based on the exception/event ID, the source of the
exception/event and the reason behind its occurrence. In addi-
tion, the exceptions/events generated by each of the users are
passed through the hierarchical framework until the excep-
tions/events are handled. Also, the memory allocated for the
record is freed and the normal course of operation is contin-
ued upon handling the reported exceptions/events by the user.

At step 210, root cause analysis is performed by one of the
layers overlying the user where the event/exception is gener-
ated, to determine the source of the event/exception. For
example, a topmost layer in the hierarchy of the embedded
system software stack performs the root cause analysis, as all
the layers below the topmost layer may not be empowered to
execute the root cause analysis. In an exemplary implemen-
tation, root cause analysis is performed by computing statis-
tical information associated with each occurrence of each
exception and event to determine the source of the exception/
event. Necessary action may be taken to ensure that all the
applications running in the embedded software system run in
an expected manner.

Referring now to FIG. 3, which is a flowchart 300 illustrat-
ing a method for reporting the synchronous exceptions by an
exception and event management (EEM) module (e.g., an
EEM module 510 of FIG. 5), according to one embodiment.
The EEM module includes an exception reporting module for
reporting the exceptions/events generated by the users regis-
tered with the EEM module. In an exemplary scenario, a
synchronous exception is generated when an EEM applica-
tion programming interface (API) (e.g., an EEM API 560 of
FIG. 5)is called by one of the users in the embedded software
system. For example, the EEM API call is routed down to a
user software layer n (SLn) that is a sub-module of a sub-
system in the embedded software system. At step 302, the
user SLn invokes the EEM API requesting for an exception/
event record. At step 304, the user SLn invokes the EEM API
to fill up the exception record. At step 306, the user SLn
returns the exception record to an overlying user SL.n-1. In
one embodiment, SL.n-1 is a higher software layer as com-
pared to SLn1i.e., SL.n-1 invokes the interfaces of SL.n and not
vice versa. At step 308, the user SL.n-1 invokes the EEM API
to obtain another exception record. Subsequently at step 310,
the user SLn-1 populates the exception/event record by
invoking the EEM API. After filling the exception/event
record, at step 312, the user SLn-1 invokes the EEM API to
link the event/exception record received by the lower level
user (SLn) with the event/exception record of the user SLn-1.

At step 314, a check is made to determine if a topmost user
of the embedded software system is reached. In case the
topmost user is not reached, at step 316, the user SL.n-1
passes the event/exception record to the overlying user, for
example SL.n-2, by decrementing the value of n. The process
of filling a fresh event/exception record, linking with the

10

15

20

25

30

35

40

45

50

55

60

65

6

previous records and transferring the event/exception record
to the next overlying user continues until the topmost user is
reached. When the topmost user is reached, at step 318, the
exception/event record data from all the underlying users is
parsed. At step 320, a check is performed to determine if the
API call was successful. In case the API call is successful, at
step 322, the user proceeds with the next operation. Alterna-
tively, at step 324, the topmost user finds there is an event/
exception mentioned in the exception/event record, the top-
most user either takes some action or updates the statistics in
the event/exception record. Further, at step 326, the topmost
user invokes the EEM API to free the memory allocated for in
the event/exception record.

Referring now to FIG. 4, which is a flowchart 400 illustrat-
ing a method for reporting asynchronous events and excep-
tions by an EEM module, according to one embodiment. In
order to report asynchronous exceptions and events, each
registered user in the embedded software system includes a
registered callback function to report asynchronous excep-
tions and the callback is implemented by the overlying users.
In an exemplary scenario, an event/exception might have
occurred at a user SLn. At step 402, the user SLn invokes an
EEM APIto obtain an exception/event record. At step 404, the
user SLn invokes the EEM API to populate the exception/
event record. Subsequently at step 406, the user SLn invokes
a registered call back to the overlying layer, for example, a
user SLn-1. Upon receiving the registered call back, at step
408, the user SLn-1 checks if the record is generated because
of'an event or an exception. In case the record is generated due
to the event, at step 410, the user SL.n-1 checks if the event
can be handled. At step 412, ifthe SL.n-1 is notable to provide
solution, then the event is passed to a next overlying user,
SLn-2 which may implement a solution. Passing of the event
to the next overlying user is repeated until a user in the
hierarchical architecture handles the event. At step 414, the
user that handles the exception takes appropriate action based
onthe exception. At step 416, if the solution is provided by the
user, the memory allocated for the record is freed and the
normal course of operation is continued.

In case the record is generated by an exception, then the
course of action is as follows. The user SLn-1 receives a
registered callback and determines that the record is gener-
ated due to an exception. Further at step 418, the SLn-1
invokes an EEM API to obtain an exception record. Thereat-
ter at step 420, the SLn-1 invokes the EEM API to populate
the exception record. At step 422, SL.n-1 invokes a registered
call back to SL.n-2. At step 424, a check is made to determine
if a topmost user of the embedded software system is reached.
Subsequently at step 426, the process of obtaining a record,
populating the record and invoking registered call back to the
overlying user is repeated till the topmost user is reached.
Thereafter, at step 428, the exception record is parsed and root
cause analysis is performed to determine the source of the
exception. Further, at step 430, memory allocated for the
exception record is freed.

Referring now to FIG. 5, which is a block diagram 500
illustrating an architecture including several types of users
including subsystems, modules and software layers for the
exception and event management in the embedded software
system, according to one embodiment. As shown FIG. 5, the
embedded software system 500 runs on a hardware system
516, including one or more processors, cores and associated
peripherals. Further as shown in FIG. 5, the hardware system
516 is communicatively coupled to an operating systems
(OS) 512 and a board support package (BSP) 514. The
embedded software system could be single or multiple-pro-
cess, and in general a multi-threaded implementation. Fur-

US 9,239,743 B2

7

thermore, the OS 512 and BSP 514 are communicatively
coupled to one or more subsystems, such as subsystem (S1)
506 and subsystem (S2) 508. Also as shown in FIG. 5, sub-
systems S1 506 and S2 508 are operatively coupled to an
application control software (ACS) 504 to facilitate smooth
working of'the embedded software system. As shown in FI1G.
5, the ACS 504 includes a master event and exception (EE)
handler 518, ACS-M1 module 520 and ACS-M2 module 522.
Further as shown in FIG. 5, the subsystem S1 506 includes a
subsystem API 524, subsystem EE handler 526, module
S1-M1 528, module S1-M2 530 and module S1-M3 532.
Furthermore, the module S1-M1 528 includes a sub-module
S1-M1-A 534 and sub-module S1-M1-B 536. The subsystem
S1 506 also includes a module and sub-module identity (ID)
definitions module 556 which includes module and sub-mod-
ule ID definitions. Similarly, the subsystem S2 508 includes a
sub-system API 538, a subsystem EE handler 540, a module
S2-M1 542, and a module S2-M2 544. Further, the module
S2-M1 542 includes a sub-module S2-M1-A 548. Further-
more, the module S2-M2 544 includes a module EE handler
546, sub-module S2-M2-A 550, sub-module S2-M2-B 552
and sub-module S2-M2-C 554. Additionally, the subsystem
S2 508 includes a module and sub-module ID definitions
module 558. Now, the subsystem S1 506, the subsystem S2
508 and the ACS 504 are coupled to an EEM API 560. The
EEM API 560 serves as a means to invoke all functionality
exported by the EEM module 510. Further, the EEM module
510 includes the EEM framework 562 that facilitates all the
event and exception management activities exported through
the EEM API 560.

In an implementation, the users, which include the sub-
systems, modules and sub-modules of the embedded soft-
ware system shown in FIG. 5, are those software entities that
invoke the functionality provided by EEM to get access to
event and exception management in the embedded software
system. Further, the EEM module 510 is configured to iden-
tify, report, log and handle the exceptions/event generated by
one or more users. For example, the EEM module 510 is
configured to interact with the users through one or more
EEM APIs. The EEM module 510 is explained in more detail
in FIG. 6.

Referring now to FIG. 6, which is a block diagram 600
illustrating the EEM module 510, such as shown in FIG. 5,
including major components and external and internal inter-
faces, according to one embodiment. The EEM module 510
interacts with the embedded software system though the
EEM API560. In an exemplary embodiment, the EEM frame-
work 562 includes an event and exception identification mod-
ule (EEIM) 602. Further, the EEIM 602 includes an EE base
ID definitions module 610. Furthermore, the EEM frame-
work 562 includes an event and exception reporting module
(EERM) 604, which includes sub-modules such as an EEM
record memory management module 612 and a record struc-
ture linking module 614. Additionally, the EEM framework
562 includes an event and exception parsing module (EEPM)
606. The EEM framework 562 further includes an event and
exception logging module (EELM) 608, which includes sub-
modules such as, a logging filter 618, a logging statistics
module 620, a logging memory for batch mode 622 and a
logger 624.

In an embodiment, the EEIM 602 is designed to uniquely
identify each of the exception/events originated from users to
locate the source of any exception/event down to the level of
specific sub-modules. Further, EERM 604 is designed to
report information regarding the exceptions/events in a well-
defined format of records through various layers, subsystems
and modules. Furthermore, EEPM 606 is designed to parse

10

15

20

25

30

35

40

45

50

55

60

65

8

each exception and event upon request by a user. Additionally,
EELM 608 is designed to log information associated with the
exceptions/events using a logging framework.

In an embodiment, the EEIM 602 provides a centralized
mechanism for identifying events and exceptions. One or
more users, for example, a software sub-module, a software
layer and a software module of the embedded software sys-
tem registers with the EEM module 510. Thereafter, the
EEIM 602 assigns a unique base ID for each of the users that
register with the EEM module 510. Subsequently, the users
optionally assign the unique base IDs to one or more internal
modules associated with the user using unique base ID of the
user as the starting address. An exemplary range ofthe unique
base IDs for the internal sub-modules of a user is (base
ID+0x0001) to (base ID+0x00FF).

Referring now to FIG. 7, which is a block diagram 700
illustrating registration of users with EEM module 510 and
exception/event identification, according to one embodiment.
In an exemplary scenario in accordance with FIG. 7, the ACS
504, subsystems S1 506 and S2 508 register with the EEM
module 510. Accordingly, the EEIM 602 assigns unique base
IDs 0XA000, 0XB000 and 0XCO000 to the ACS 504, S1 506
and S2 508, respectively. Thereafter, the ACS 504 extends the
unique base IDs to one or more sub-modules associated with
the ACS 504. The ACS 504 assigns a base ID of 0XA100 to
sub-module ACS M1 520 and a base ID of 0XA200 to sub-
module ACS M2 522. Similarly, the modules S1 506 and S2
508 also assign a range of unique IDs keeping the starting
address as the unique base ID of the modules S1 506 and S2
508, as illustrated in FIG. 7. In an embodiment, the EEM
module 510 stores the unique base IDs assigned to the users in
the EE base ID definitions module 610.

Referring now to FIG. 8, which is a block diagram 800 that
illustrates generating and reporting exceptions/events
through various software layers (users) in the embedded soft-
ware system, according to one embodiment. In an embodi-
ment, an exception/event is generated at the user S2-M1-A
548. Further, the user S2-M1-A 548 requests the EEM mod-
ule 510 to allocate a record 802 and populates the record 802
with the details of the exception/event. Thereafter, the user
S2-M1-A 548 transters the record 802 to the overlying user
S2-M1 542. Furthermore, the user S2-M1 542 requests the
EEM module 510 to allocate a record 804 and populates the
record 804 with the details its own event/exception along with
the exception/event information associated with the underly-
ing user S2-M1-A 548. Subsequently, the user S2-M1 542
concatenates the record 802 with the record 804 by invoking
the EEM module 510. Thereafter, the user S2-M1 542 passes
the concatenated record to the overlying user S2 508. The
process of creating a new record, linking the new record with
the concatenated records and passing the record to the over-
lying user is repeated over all subsequent overlying users, for
example, S2 508 and ACS 504. The record is in the form of a
linked list including records of all the users associated with
the exception/event. Further, the user ACS 504 parses the
record to extract details of the exception/event that occurred
atuser S2-M1-A 548, S2-M1 542, S2 508 and ACS 504. Upon
parsing the record, the record is destroyed.

Referring now to FIGS. 9A-F, which are tables 900A-F
respectively, illustrate specific details of exception/event
reporting data structures, according to one embodiment. One
or more data structures are used to report an event/exception
that occurs in the embedded software system. Particularly, in
anembodiment, an exception structure is as illustrated in FIG.
9A. A field 902 depicts a resolution of the exception reporting
data structure, field 904 depicts a name of the exception

US 9,239,743 B2

9

reporting data structure and field 906 denotes an element
description of the exception reporting data structure.

Particularly, in an embodiment, FIG. 9B illustrates a struc-
ture of an exception code. For example, 32 bits are allocated
for the exception reporting data structure. As shown in FIG.
9B, 8 bits starting from bits 31-24 are reserved for debugging
purposes or future extensions, 4 bits starting from bits 23-20
are allocated to represent a type of the exception and the
remaining 20 bits, bits starting from 19-0 are allocated to
represent the value of the exception. The value of the excep-
tion represents a reason due to which the exception was
generated. Further, FIG. 9C illustrates a few exemplary
exception types. In FIG. 9D, the field 920 illustrates the
resolution of an event reporting data structure. Further, a field
922 illustrates the name of the event reporting data structure.
Furthermore, a field 924 illustrates the element description of
the event reporting data structure. FIG. 9E illustrates a gen-
eral structure of an event code. For example, 32 bits are
allocated for the event reporting data structure. As shown in
FIG. 9B, 8 bits starting from bits 31-24 are reserved for
debugging purposes or future extensions, 4 bits starting from
bits 23-20 are allocated to represent a type of the event and the
remaining 20 bits (bits starting from 19-0) are allocated to
represent the value of the event. The value of the event rep-
resents a reason due to which the event was generated. Fur-
ther, FIG. 9F illustrates a few exemplary event types.

Referring now to FIG. 10, which is a block diagram 1000
illustrating exception and event logging and parsing, accord-
ing to one embodiment. In an exemplary implementation, all
the users in the embedded software system have access to
standardized interfaces of the EELM 608. Pre-configured
rules and policies are defined in the EEL.M 608 for maintain-
ing consistency in one or more log records. Users of the
embedded software system use one or more fields in the
structure of the log record for defining the type of log that is
recorded. In an exemplary implementation, the fields in logs
are NONE (disables logging), ERROR (all traces in the cat-
egory of ERROR need to be logged), WARNING (all traces in
the category of ERROR and WARNING need to be logged),
EVENT (all traces in the category of EVENT need to be
logged), INFORMATIONAL (all traces in the category of
ERROR, WARNING, EVENT and INFORMATIONAL
need to be logged), OTHER (any other general purpose
traces). The logging filter 618 (shown in FIG. 6) is used to
determine if the log record is to be saved or discarded. For
example, a rule may be implemented in the logging filter 618
to allow only event logs and error logs to be sent for logging,
while discarding other log types.

The EELM 608 supports logging the exception/event
records at one or more destinations, for example, logging the
exception/event records at a standard output terminal, writing
the records to a file, sending the records to a destination over
a network connection, writing to a pre-defined region in the
memory or any combination of these destinations. More than
one destinations of each type (file, network, memory) may
also be chosen. In an exemplary implementation, the EEPM
606 parses the linked list of the exception/event records in
order to figure out the information that needs to be furnished
in the record. The EEM module 510 implements a standard
syntax (format) for the information to be logged from excep-
tion/event records that the EEPM 606 is currently parsing. In
an exemplary embodiment, the format is as below:
<Log Prefix> ‘[‘<Log Type> ’]” ‘[‘<Log Timestamp> ’]’
‘[‘<Log Source> "|’<Log Description and Parameters>
The field <Log Prefix> is populated by the system that is
filling the exception/event record. The <Log Type> field
describes the nature of the log, for example, ERROR log—

20

25

30

40

45

55

10
“Error”, WARNING log—“Warning”, EVENT log—
“Event”, INFORMATIONAL log—*“Info”/, OTHER—
“Log” and so on. The <Log Timestamp> field prints the value
of the time at which the entry in the record was made. For
example, timestamps may be printed in decimal offsets from
a predefined reference. The <Log Source> field prints the
unique base 1D of the user making the entry into the record.
The <Log Description and Parameters> field includes a
description message that may be stored in the in the descriptor
field of the exception/event record along with associated
parameters values that may be useful to analyze the cause of
occurrence of the exception/event from the logs. In an exem-
plary embodiment, the standard syntax for logging an error
event is as below:
VIDEO-PHONE][Error][32204552445][0x3001]ACS-M1:
Unable to allocate memory (Requested Size=0x4008,
Free=0x3804).
Where, VIDEO-PHONE is the <Log Prefix> field indicating
the type of device reporting the error, [Error] is the log type,
that denotes that the log is an error log, [32204552445] is the
log time stamp at the time of entry of the error in decimal
format, [0x3001]ACS-M1, is the unique ID of the user where
the error log originated. “Unable to allocate memory”, is the
error descriptor of the error log in the exception/event record
and (Requested Size=0x4008, Free=0x3804) is the parameter
associated with this descriptor. In some embodiments, some
examples of error log syntax are as below:
DVR[Info][32367437756][0x7020]S2-M1-A:
GOP boundary (Last GOP size=32).
SERVER[Event][34204552769][0x1031]S2-M2-B:De-
tected video decode failure (Code: 0x1022).
The fields are as explained in the previous example.

In an embodiment, the EEM module 510 performs logging
in a batch mode. In the batch mode, the EEM module 510
temporarily writes the incoming logs to a region in memory,
such as logging memory for batch mode 622, and periodically
routes the logs stored in the memory to a predefined destina-
tion. The batch mode is executed so that the event of logging
does not impact the overall system performance. Addition-
ally, the EEM module 510 provides functionality to log the
statistics corresponding to the exception/event logs generated
in the embedded software system. In an exemplary imple-
mentation, the logging of statistics associated with the excep-
tions/events is performed by the logging statistics module
620. In an exemplary scenario, the log statistics are used by
developers and system architects to optimize system perfor-
mance. Further, log statistics are accessed and utilized offline
to perform any calculations.

Exception and event handling module (EEHM) addresses
the exception/event. The EEHM is placed at various users and
sub-modules in the architectural hierarchy of the embedded
software system, which may be deemed suitable to handle a
particular kind of exception/event. Referring now to FIG. 11,
which is a block diagram 1100 illustrating a hierarchical
approach in handling the events/exception, according to one
embodiment. For example, the lowest level of EEHM shown
is in the module S2-M2 544, which is the module EE handler
546. Further, the exceptions/events raised by sub-modules
S2-M2-A550, S2-M2-B552 and S2-M2-C554 are handled by
amodule EE handler 546. Any exceptions/events not handled
by the module EE handler 546 of subsystem S2 508 shall be
further relayed to and handled by the subsystem EE handler
540. Further, exceptions that are not handled by the sub-
system EE handler are relayed to the master EE handler 518,
which is a part of the ACS 504. In an exemplary scenario, the
user (S2-M2-A 550), where an exception/event occurs, is not
able to handle the event/exception the user depends on an

Reached

US 9,239,743 B2

11

overlying user (S2-M2 544) to handle events/exceptions. In
case the overlying user (S2-M2 544) is not able to handle the
exception/event, the overlying user may further relay the
exception/event to the next overlying user (S2 508) in the
architectural hierarchy of the embedded software system.
Therefore, exceptions/events that are generated may have to
travel through several users before they are handled. In some
embodiments, the topmost user, in this case ACS 504 includ-
ing the master EE handler 518 is required to handle all the
exceptions/events that are passed from underlying users. In
cases where the exceptions/events are handled by any of the
intermediate users, the overlying users are reported for book-
keeping purposes.

Referring now to FIG. 12, which is a block diagram 1200
illustrating standard APIs provided to all the users registered
with the EEM module 510 for exception/event reporting,
handling and parsing, according to one embodiment. The
EEM module 510 (as shown in FIG. 5), provides standardized
functionality to all the users registered with the EEM module
510. When an exception/event is generated in the user, the
EEM API 560 is called for allocating an exception/event
record. Thereafter, the user invokes the EEM API 560 for
filling the exception/event record. In case the exception/event
record is sent to an overlying user, the overlying user invokes
the EEM API 560 to link the exception/event record gener-
ated in the overlying user with the exception/event record
passed from the underlying user. Subsequently, when the user
intends to handle the exception/event, the user invokes the
EEM API 560 for parsing the exception/event record. After
parsing the exception/event record, the user takes necessary
action to address the exception/event raised and call the EEM
API 560 to free the exception/event record.

Referring now to FIG. 13, which is a block diagram 1300
illustrating how different types of users within the embedded
software system use the available EEM APIs to invoke dif-
ferent EEM interfaces, according to one embodiment. The
user which is a source of exception/event 1302 invokes the
EEM API 560 to allocate and fill the exception/event record.
When the exception/event record is passed to an overlying
user, the overlying user is a recipient of the exception/event
1304. The recipient of the exception/event 1304 invokes three
types of EEM APIs from the EEM module 510. Initially, the
recipient of the exception/event 1304 invokes the EEM API
560 to allocate an exception/event record. Thereafter, the
recipient of the exception/event 1304 invokes the EEM API
560 to populate the exception/event record. Subsequently, the
recipient of the exception/event 1304 invokes the EEM API
560 to link the exception/event record passed by the source of
exception/event 1302 and the exception/event record gener-
ated by the recipient of the exception/event 1304. Further, the
user in the embedded software system acts as a handler of the
exception/event 1306. The handler of the exception/event
1306 invokes the EEM API 560 to parse the exception/event
record. Thereafter, the handler of the exception/event 1306
performs one or more actions to address the exception/event.
After taking the action, the handler of the exception/event
1306 invokes the EEM API 560 to free the exception/event
record.

Referring now to FIG. 14, which is a block diagram 1400
illustrating an embedded software system 1402 including the
EEM module 510 to identify, report and handle various
events/exceptions encountered in the embedded software sys-
tem, according to one embodiment. FIG. 14 and the following
discussions are intended to provide a brief, general descrip-
tion of a suitable computing environment in which certain
embodiments of the inventive concepts contained herein are
implemented.

10

15

20

25

30

35

40

45

50

55

60

65

12

The embedded software system 1402 includes at least one
processor (e.g., a processor 1404), memory 1406, a remov-
able storage 1418, and a non-removable storage 1420. The
embedded software system 1402 additionally includes a bus
1414 and a network interface 1416. As shown in FIG. 14, the
embedded software system 1402 includes access to the com-
puting system environment 1400 that includes one or more
user input devices 1422, one or more output devices 1424, and
one or more communication connections 1426 such as a
network interface card and/or a universal serial bus connec-
tion.

Exemplary user input devices 1422 include a digitizer
screen, a stylus, a trackball, a keyboard, a keypad, a mouse,
touch screen and the like. Exemplary output devices 1424
include a display unit of the personal computer, a mobile
device, and the like. Exemplary communication connections
1426 include alocal area network, a wide area network (wired
or wireless), and/or other network.

The memory 1406 further includes volatile memory 1408
and non-volatile memory 1410. A variety of computer-read-
able storage media are stored in and accessed from the
memory elements of the embedded software system 1402,
such as the volatile memory 1408 and the non-volatile
memory 1410, the removable storage 618 and the non-remov-
able storage 1420. The memory elements include any suitable
memory device(s) for storing data and machine-readable
instructions, such as read only memory, random access
memory, erasable programmable read only memory, electri-
cally erasable programmable read only memory, hard drive,
removable media drive for handling compact disks, digital
video disks, diskettes, magnetic tape cartridges, memory
cards, Memory Sticks™, and the like.

The processor 1404, as used herein, means any type of
computational circuit, such as, but not limited to, a micropro-
cessor, a microcontroller, a complex instruction set comput-
ing microprocessor, a reduced instruction set computing
microprocessor, a very long instruction word microprocessor,
an explicitly parallel instruction computing microprocessor, a
graphics processor, a digital signal processor, or any other
type of processing circuit. The processor 1404 also includes
embedded controllers, such as generic or programmable logic
devices or arrays, application specific integrated circuits,
single-chip computers, smart cards, and the like.

Embodiments of the present subject matter may be imple-
mented in conjunction with program modules, including
functions, procedures, data structures, and application pro-
grams, for performing tasks, or defining abstract data types or
low-level hardware contexts. Machine-readable instructions
stored on any of the above-mentioned storage media may be
executable by the processor 1404 of the embedded software
system 1402. For example, a computer program 1412
includes machine-readable instructions capable of identify-
ing, reporting, logging and handling exceptions/events gen-
erated in the embedded software system 1402, according to
the teachings and herein described embodiments of the
present subject matter. In one embodiment, the computer
program 1412 is included on a compact disk-read only
memory (CD-ROM) and loaded from the CD-ROM to a hard
drive in the non-volatile memory 1410. The machine-read-
able instructions cause the embedded software system 1402
to operate according to the various embodiments of the
present subject matter.

As shown, the computer program 1412 includes the EEM
module 510. For example, the EEM module 510 can be in the
form of instructions stored on a non-transitory computer-
readable storage medium. When the instructions in the non-
transitory computer-readable storage medium are executed

US 9,239,743 B2

13

by a computing device, causes the embedded software system
1402 to perform the one or more methods described with
reference to FIGS. 1 through 13.

Thus, the described method and architecture provides a
hierarchical approach for event and exception handling in an
embedded software system using linked list approach. The
described method also provides a centralized definition and
identification mechanism for exceptions and events with
decentralized reporting and handling. Further, the method
and architecture supports multiple types of exceptions/events
and can be extended to incorporate new types of exceptions/
events. Furthermore, the method and architecture supports
both synchronous and asynchronous exceptions. Addition-
ally, the method and architecture is integrated with software
logging framework and statistics collection framework for
providing reliable logging and analytics services.

Although certain methods, systems, apparatus, and articles
of manufacture have been described herein, the scope of
coverage of this patent is not limited thereto. To the contrary,
this patent covers all methods, apparatus, and articles of
manufacture fairly falling within the scope of the appended
claims either literally or under the doctrine of equivalents.

What is claimed is:

1. A method for providing a dedicated exception and event
management (EEM) framework for exception and event man-
agement in an embedded software system using an EEM
module, comprising:

uniquely identifying each of exceptions/events originated

from users and severity categorization of the exceptions/
events using an event and exception identification mod-
ule (EEIM), wherein the users are software subsystems,
software layers, software modules and software sub-
modules in the embedded software system, wherein the
users are managed using an application control software
(ACS) which is a centralized intelligence and control
logic;

reporting information regarding the exceptions/events by

various users using an event and exception reporting

module (EERM), wherein reporting information regard-

ing the exceptions/events comprises:

allocating a first record to a user to fill exception/event
information by the EERM upon receiving a first
request from the user;

transferring the first record by the user to a subsequent
overlying user;

allocating a second record to the subsequent overlying
user by the EERM to fill additional exception/event
information to supplement the exception/event infor-
mation populated in the first record upon receiving a
second request from the subsequent overlying user;

enabling the subsequent overlying user to link the sec-
ond record with the first record by the EERM and
transferring the linked records by the subsequent
overlying user to a next subsequent overlying user;
and

enabling repetition of the above steps for each subse-
quent overlying user by the EERM until the linking of
records of all subsequent overlying users is completed
such that at a final overlying layer of the embedded
software system, all the records of all the underlying
layers are linked and reported as a linked list;

logging information associated with one or more of the

reported exceptions/events using the linked list of linked

records using an event and exception logging module

(EELM); and

handling, using an event and exception handling module
(EEHM), the reported exceptions/events to keep appli-

15

25

35

40

45

50

55

60

65

14

cations running without causing an unexpected behavior
in the embedded software system using the linked list of
linked records,

wherein the EEM module interacts with different types of

the users and the ACS within the embedded software
system though EEM application programming inter-
faces (APIs),

wherein the EEM module includes the EEM framework

that facilitates the event and exception management
activities exported through the EEM APIs,

wherein the EEM framework includes the EEIM, EERM,

EELM and EEHM that are coupled to each other, and
wherein the EEIM, EERM, EELM and EEHM are coupled
to the ACS and the users through the EEM APIs.

2. The method of claim 1, wherein uniquely identifying
each of the exceptions/events originated from the users com-
prises:

registering each of the users using a unique base identity

(ID) during initialization of the users; and

using the unique base IDs of the users to uniquely identify

the exceptions/events generated by the users.

3. The method of claim 2, wherein each registered user in
the embedded software system includes a registered callback
function to report asynchronous exceptions and the callback
is implemented by overlying users.

4. The method of claim 2, further comprising:

providing the ability to each user to extend its unique base

ID for its internal modules and sub-modules to further
assist in identification of an exact source of exception/
event occurrence.

5. The method of claim 1, wherein the exception/event
record includes the associated unique base IDs and module or
sub-module base IDs where the exception/event is encoun-
tered and details selected from the group consisting of a line
of code generating the event/exception, a name of a function
generating the event/exception, string description of the
exception/event in words, exception/event codes, severity of
the event/exception and any debug parameters or information
associated with the event/exception.

6. The method of claim 1, wherein reporting the informa-
tion regarding the exceptions/events through the various soft-
ware layers, software subsystems and software modules for
use by the application comprises:

reporting the information regarding the exception/event

records using one or more data structures; and

using the same data structures by all the users to maintain

consistency of reporting, management of the memory
for these exception/event records in the embedded soft-
ware system and deterministic parsing of the exception/
event information reported using an event and exception
parsing module (EEPM) of the EEM {framework,
wherein the EEIM, EERM, EELM, EEPM and EEHM
are coupled to the ACS and the users through the EEM
APIs.

7. The method of claim 1, wherein logging the information
associated with the one or more of the reported exceptions/
events using the logging framework comprises:

determining the one or more of the reported exceptions/

events to be logged using a logging filter of the EELM;
filtering the logged exceptions/events based on logging
criteria using the logging filter; and

logging the information associated with the filtered excep-

tions/events at one or more destinations using the using
a logger of the EELM.

8. The method of claim 7, wherein logging the information
associated with the one or more of the reported exceptions/
events using the logging framework comprises:

US 9,239,743 B2

15

logging the information associated with the one or more of
the reported exceptions/events in a batch mode using a
logging memory of the EELM, wherein the exception/
event logs are temporarily stored in memory and peri-
odically routed to the one or more destinations; and

logging the batch mode traces to the one or more destina-
tions in a low priority or background mode to minimize
impact on the core processing load of the embedded
software system using the lobbing memory.
9. The method of claim 1, wherein handling the reported
exceptions/events to keep the applications running without
causing the unexpected behavior in the embedded software
system comprises:
defining a hierarchical framework for handling the
reported exceptions/events originated from each of the
users based on an invoked user functionality using the
EERM;

parsing each of the linked exception/event records for root
cause analysis to determine the source of the exception/
event using an EEPM, and

taking necessary actions based on the outcome of the pars-

ing to keep the applications running without causing the
unexpected behavior using the EEHM.
10. The method of claim 9, further comprising:
passing the exceptions/events generated by each of the
users through the hierarchical framework using the
EERM until the exceptions/events are handled.

11. The method of claim 9, further comprising:

freeing the memory allocated for the record using an EEM
record memory management module of the EERM and
continuing the normal course of operation upon han-
dling the exceptions/events by the user.

12. The method of claim 1, further comprising:

computing statistical information associated with each

occurrence of each exception/event using a logging sta-
tistics module of the EELM for root cause analysis to
determine a source of the exception/event.

13. The method of claim 1, wherein the exception is a
synchronous exception or an asynchronous exception.

14. The method of claim 1, wherein each of the first record
and the second record comprises a region of memory.

15. The method of claim 1, wherein the first record is
allocated to the user and the second record is allocated to the
subsequent overlying user using an EEM record memory
management module of the EERM.

16. The method of claim 1, wherein the subsequent over-
lying user is enabled to link the second record with the first
record using a record structure linking module of the EERM.

17. An embedded system, comprising:

a processor;

memory operatively coupled to the processor, wherein the

memory comprises:
users, wherein the users are subsystems, modules and
sub-modules in the embedded software system;
application control software (ACS coupled to the users,
the ACS is a centralized intelligence and control logic
to manage the users:
an exception and event management (FEM) module for
providing a dedicated exception and event manage-
ment, where in EEM to:
identify, report, log, and handle the exceptions/event
generated by the users:
interact with different types of the users and ACS
within the embedded software system though EEM
application programming interfaces (APIs);
include the EEM framework that facilitates all the
event and exception management activities

10

15

20

25

30

35

40

45

55

60

65

16

exported through the EEM APIs, wherein the EEM

framework further comprises:

an event and exception identification module
(EEIM) configured to uniquely identify each of
exceptions/events originated from the users and
severity categorization of the exceptions/events;

an event and exception reporting module (EERM)
configured to report information regarding
exceptions/events by various users, wherein the
EERM is configured to:
allocate a first record to a user to fill exception/
event information upon receiving a first request
from the user, the user transfers the first record to
a subsequent overlying user upon filling the
exception/event information;
allocate a second record to the subsequent over-
lying user to fill additional exception/event
information to supplement the exception/event
information populated in the first record upon
receiving a second request from the subsequent
overlying user;
enable the subsequent overlying user to link the
second record with the first record, wherein the
subsequent overlying user transfers the linked
records to a next subsequent overlying user; and
enable repetition of the above steps for each sub-
sequent overlying user until the linking of the
exception/event records of all subsequent over-
lying users is completed such that at a final over-
lying layer of the embedded software system, all
the records of all the underlying layers are linked
and reported as a linked list;

an event and exception logging module (EELM)
configured to log information associated with
one or more of the reported exceptions/events
using the linked list of linked records;

an event and exception parsing module (EEPM)
configured to parse the linked list of linked
records in order to handle the event/exception;
and

an event and exception handling module (EEHM)
enables at least one of the users to handle the
reported exceptions/events to keep applications
running without causing an unexpected behavior
in the embedded software system using the
linked list of linked records,

wherein the EEIM, EERM, EELM, EEPM and
EEHM are coupled to each other, and
wherein the EEIM, EERM, EELM, EEPM and

EEHM are coupled to the ACS and the users

through the EEM APIs.

18. The system of claim 17, wherein the EEIM module is
configured to:

register each of the users using a unique base identity (ID)

during initialization of the users; and

use the unique base IDs of the users to uniquely identify the

exceptions/events generated by the users.

19. The system of claim 17, wherein the exception/event
record includes the associated unique base IDs and module or
sub-module base IDs where the exception/event is encoun-
tered and details selected from the group consisting of a line
of code generating the event/exception, a name of a function
generating the event/exception, string description of the
exception/event in words, exception/event codes, severity of
the event/exception and any debug parameters or information
associated with the event/exception.

US 9,239,743 B2

17

20. The system of claim 17, wherein the EEM module is
configured to:

define pre-configured rules and policies in the EELM for

maintaining consistency of logs from the linked records.

21. The system of claim 17, wherein the EELM comprises:

a logging filter to:

determine the one or more of the reported exceptions/
events to be logged; and

filter the logged exceptions/events based on logging cri-
teria; and

a logger to log the information associated with the filtered

exceptions/events at one or more destinations.
22. The system of claim 21, wherein the EELM is config-
ured to log the exception/event information in the one or more
destinations including providing a standard output to a termi-
nal, writing to a file, sending over a network to a remote
server, and writing to a specific region of memory.
23. The system of claim 17, wherein the EEM module is
configured to:
define a hierarchical framework for handling the reported
exceptions/events originated from each of the users
based on an invoked user functionality using the EERM;

parse each of the linked and defined exception/event
records for root cause analysis to determine the source of
the exception/event using the EEPM; and

take necessary actions based on the outcome of the parsing

to keep the applications running without causing the
unexpected behavior using the EEIM.

24. The system of claim 23, wherein the EEM module is
configured to:

implement a standard syntax for the information to be

logged from the exception/event records that the EEM
module is currently parsing.

25. The system of claim 17, wherein the EEM APIs are
configured to:

allocate the exception/event record when the exception/

event is generated in the user;

fill the exception/event record;

link the exception/event records created by the users as

they propagate across the users of the embedded soft-
ware system,

parse the exception/event record when an user intends to

handle the exception/event; and

free the exception/event record upon taking necessary

actions by the user to address the exception/event raised.

26. The system of claim 17, wherein the EERM comprises:

an EEM record memory management module to allocate

the first record to the user and the second record to the
subsequent overlying user.

27. The system of claim 17, wherein the EERM comprises:

a record structure linking module to enable the subsequent

overlying user to link the second record with the first
record.

28. A non-transitory computer-readable storage medium
for providing a dedicated exception and event management
(EEM) framework for exception and event management in an
embedded software system using an EEM module, having
instructions that when executed by a computing device, cause
the computing device to perform a method comprising:

uniquely identifying each of exceptions/events originated

from users and severity categorization of the exceptions/
events using an event and exception identification mod-
ule (EEIM), wherein the users are subsystems, modules
and sub-modules in the embedded software system,
wherein the users are managed using an application
control software (ACS) which is a centralized intelli-
gence and control logic;

10

15

20

25

30

35

40

45

50

55

60

65

18

reporting information regarding exceptions/events by vari-
ous users using an event and exception reporting module
(EERM), wherein reporting the information regarding
exceptions/events comprises:
allocating a first record to a user to fill exception/event
information by the EERM upon receiving a first
request from the user;
transferring the first record by the user to a subsequent
overlying user;
allocating a second record to the subsequent overlying
user by the EERM to fill additional exception/event
information to supplement the exception/event infor-
mation populated in the first record upon receiving a
second request from the subsequent overlying user;
enabling the subsequent overlying user to link the sec-
ond record with the first record by the EERM and
transferring the linked records by the subsequent
overlying user to a next subsequent overlying user;
and
enabling repetition of the above steps for each subse-
quent overlying user by the EERM until the linking of
the exception/event records of all subsequent overly-
ing users is completed such that at a final overlying
layer of the embedded software system, all the records
of all the underlying layers are linked and reported as
a linked list;
logging information associated with one or more of the
reported exceptions/events using the linked list of linked
records using an event and exception logging module
(EELM); and
handling, using an event and exception handling module
(EEHM), the reported exceptions/events to keep appli-
cations running without causing an unexpected behavior
in the embedded software system using the linked list of
linked records,
wherein the EEM module interacts with different types of
the users and the ACS within the embedded software
system though EEM application programming inter-
faces (APIs),

wherein the EEM module includes the EEM framework

that facilitates the event and exception management
activities exported through the EEM APIs,

wherein the EEM framework includes the EEIM, EERM,

EELM and EEHM that are coupled to each other, and
wherein the EEIM, EERM, EELM and EEHM are coupled
to the ACS and the users through the EEM APIs.

29. The non-transitory computer-readable storage medium
of claim 28, wherein uniquely identifying each of the excep-
tions/events originated from the users comprises:

registering each of the users using a unique base identity

(ID) during initialization of the users; and

using the unique base IDs of the users to uniquely identify

the exceptions/events generated by the users.

30. The non-transitory computer-readable storage medium
of claim 28, wherein the exception/event record includes the
associated unique base IDs and module or sub-module base
IDs where the exception/event is encountered and details
selected from the group consisting of a line of code generating
the event/exception, a name of a function generating the
event/exception, string description of the exception/event in
words, exception/event codes, severity of the event/exception
and any debug parameters or information associated with the
event/exception.

31. The non-transitory computer-readable storage medium
of claim 28, wherein logging the information associated with
the one or more of the reported exceptions/events using the
logging framework comprises:

US 9,239,743 B2

19

determining the one or more of the reported exceptions/
events to be logged using a logging filter of the EELM;

filtering the logged exceptions/events based on logging
criteria using the logging filter; and

logging the information associated with the filtered excep-

tions/events at one or more destinations using the log-
ging framework using a logger of the EELM.
32. The non-transitory computer-readable storage medium
of claim 28, wherein handling the reported exceptions/events
to keep applications running without causing the unexpected
behavior in the embedded software system comprises:
defining a hierarchical framework for handling the
reported exceptions/events originated from each of the
users based on an invoked user functionality using the
EERM,;

parsing each of the linked and defined exception/event
records for root cause analysis to determine the source of
the exception/event using an EEPM; and

taking necessary actions based on the outcome of the pars-

ing to keep the applications running without causing the
unexpected behavior using the EEHM.

#* #* #* #* #*

15

20

20

